Tìm kiếm nâng cao
Hướng dẫn sử dụng
Loại tài liệu: Tài liệu số - book
Thông tin trách nhiệm: Zhang, David; Xu, Yong; Zuo, Wangmeng
Nhà Xuất Bản: Springer Singapore
Năm Xuất Bản: 2019
Tải ứng dụng tại các liên kết sau để xem đầy đủ tài liệu.
This monograph describes the latest advances in discriminative learning methods for biometric recognition. Specifically, it focuses on three representative categories of methods: sparse representation-based classification, metric learning, and discriminative feature representation, together with their applications in palmprint authentication, face recognition and multi-biometrics. The ideas, algorithms, experimental evaluation and underlying rationales are also provided for a better understanding of these methods. Lastly, it discusses several promising research directions in the field of discriminative biometric recognition. .
(Sử dụng ứng dụng VNU- LIC quét QRCode này để mượn tài liệu)
(Lưu ý: Sử dụng ứng dụng Bookworm để xem đầy đủ tài liệu. Bạn đọc có thể tải Bookworm từ App Store hoặc Google play với từ khóa "VNU LIC”)
Advances in Human Factors in Wearable Technologies and Game Design : Proceedings of the AHFE 2017 International Conference on Advances in Human Factors and Wearable Technologies, July 17-21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA
E-Learning and Games 10th International Conference, Edutainment 2016, Hangzhou, China, April 14-16, 2016, Revised Selected Papers
European policy implementation and higher education : analyzing the Bologna process
Evaluation of Novel Approaches to Software Engineering 11th International Conference, ENASE 2016, Rome, Italy, April 27–28, 2016, Revised Selected Papers
Grand challenges in marine biotechnology
High-Frequency Statistics with Asynchronous and Irregular Data
Introduction of biotechnology in India's agriculture : impact, performance and economics
On the Direct Detection of 229m Th
Open innovation business modeling : gamification and design thinking applications
Programming for Computations - Python : A Gentle Introduction to Numerical Simulations with Python 3.6