Tìm kiếm nâng cao
Hướng dẫn sử dụng
Loại tài liệu: Tài liệu số - Book
Thông tin trách nhiệm: Crabb, Michael ; Ranicki, Andrew
Nhà Xuất Bản: Springer
Năm Xuất Bản: 2017
Tải ứng dụng tại các liên kết sau để xem đầy đủ tài liệu.
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.
(Sử dụng ứng dụng VNU- LIC quét QRCode này để mượn tài liệu)
(Lưu ý: Sử dụng ứng dụng Bookworm để xem đầy đủ tài liệu. Bạn đọc có thể tải Bookworm từ App Store hoặc Google play với từ khóa "VNU LIC”)
Kant's radical subjectivism : perspectives on the transcendental deduction
Longitudinally polarised terahertz radiation for relativistic particle acceleration
Next stop Mars : the why, how, and when of human missions
Nonlocal and nonlinear diffusions and interactions : new methods and directions : Cetraro, Italy 2016
Now I know' : five centuries of aqedah exegesis
Ramanujan summation of divergent series
Rapid cell magnetisation using cationised magnetoferritin
Space charge physics for particle accelerators
Spatial interaction models : facility location using game theory
Topological data analysis for scientific visualization