Hướng dẫn sử dụng

Global Seismicity Dynamics and Data-Driven Science: Seismicity Modelling by Big Data Analytics

Loại tài liệu: Tài liệu số - BOOK

Thông tin trách nhiệm: Mitsuhiro, Toriumi

Nhà Xuất Bản: Springer

Năm Xuất Bản: 2021

Tải ứng dụng tại các liên kết sau để xem đầy đủ tài liệu.

Tóm tắt

The recent explosion of global and regional seismicity data in the world requires new methods of investigation of microseismicity and development of their modelling to understand the nature of whole earth mechanics. In this book, the author proposes a powerful tool to reveal the characteristic features of global and regional microseismicity big data accumulated in the databases of the world. The method proposed in this monograph is based on (1) transformation of stored big data to seismicity density data archives, (2) linear transformation of microseismicity density data matrixes to correlated seismicity matrixes by means of the singular value decomposition method, (3) time series analyses of globally and regionally correlated seismicity rates, and (4) the minimal non-linear equations approximation of their correlated seismicity rate dynamics. Minimal non-linear modelling is the manifestation for strongly correlated seismicity time series controlled by Langevin-type stochastic dynamic equations involving deterministic terms and random Gaussian noises. A deterministic term is composed minimally with correlated seismicity rate vectors of a linear term and of a term with a third exponent. Thus, the dynamics of correlated seismicity in the world contains linearly changing stable nodes and rapid transitions between them with transient states. This book contains discussions of future possibilities of stochastic extrapolations of global and regional seismicity in order to reduce earthquake disasters worldwide. The dataset files are available online and can be downloaded at springer.com.

Ngôn ngữ:en
Thông tin trách nhiệm:Mitsuhiro, Toriumi
Thông tin nhan đề:Global Seismicity Dynamics and Data-Driven Science: Seismicity Modelling by Big Data Analytics
Nhà Xuất Bản:Springer
Loại hình:BOOK
Bản quyền:© Springer Nature Singapore Pte Ltd. 2021
Mô tả vật lý:235 p.
Năm Xuất Bản:2021

(Sử dụng ứng dụng VNU- LIC quét QRCode này để mượn tài liệu)

(Lưu ý: Sử dụng ứng dụng Bookworm để xem đầy đủ tài liệu. Bạn đọc có thể tải Bookworm từ App Store hoặc Google play với từ khóa "VNU LIC”)