Tìm kiếm nâng cao
Hướng dẫn sử dụng
Loại tài liệu: Tài liệu số - Journals article
Thông tin trách nhiệm: K. Eiler; S. Suriñach; J. Sort; E. Pellicer
Nhà Xuất Bản: Elsevier B.V.
Năm Xuất Bản: 2020
Homogeneously mesoporous Ni–Pt thin films have been successfully synthesized by potentiostatic electro-deposition from an aqueous solution. The films are single-phase nanocrystalline Ni–Pt fcc solid solution and theircomposition can be adjusted with the deposition potential to a Ni content within 60-100 at%. The mesoporosityis constantly present, independent of the composition or microstructure, homogeneously distributed in all di-mensions of the films with a pore diameter in the order of 10 nm. Film thickness is uniform and in the range of200–300 nm. The films show improved performance over an electrodeposited Pt film at hydrogen evolutionreaction (HER) and excellent stability in H2SO4during 200 cycles. For the composition 84 at% Ni and 16 at% Pt,the overpotential required to reach a HER activity of −10 mA/cm2is as low as −0.09 V vs. RHE. Meanwhile, themesoporous alloy film with 95 at% Ni exhibits the highest activity with regard to the electrochemical surfacearea (ECSA).
(Sử dụng ứng dụng VNU- LIC quét QRCode này để mượn tài liệu)
(Lưu ý: Sử dụng ứng dụng Bookworm để xem đầy đủ tài liệu. Bạn đọc có thể tải Bookworm từ App Store hoặc Google play với từ khóa "VNU LIC”)
Introduction to solid mechanics : an integrated approach
Thomas Jefferson
A new banking system: the needful capital for rebuilding the burnt district
Effect of phase structures and substrate temperatures on NTC characteristics of Cu-modified Ba–Bi–O-based perovskite-type thermistor thin films
Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’ and ‘nano’ scale
Thiên Tài Bên Trái, Kẻ Điên Bên Phải
A Performative Feel for the Game : How Meaningful Sports Shape Gender, Bodies, and Social Life
Herbicide Residue Research in India
Natural Language Processing Recipes : Unlocking Text Data with Machine Learning and Deep Learning using Python
Compression-based methods of statistical analysis and prediction of time series