Tìm kiếm nâng cao
Hướng dẫn sử dụng
Loại tài liệu: Tài liệu số - Book
Thông tin trách nhiệm: Alpaydin, Ethem
Nhà Xuất Bản: MIT Press
Năm Xuất Bản: 2010
Tải ứng dụng tại các liên kết sau để xem đầy đủ tài liệu.
The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. The second edition of Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. In order to present a unified treatment of machine learning problems and solutions, it discusses many methods from different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The text covers such topics as supervised learning, Bayesian decision theory, parametric methods, multivariate methods, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, and reinforcement learning...
(Sử dụng ứng dụng VNU- LIC quét QRCode này để mượn tài liệu)
(Lưu ý: Sử dụng ứng dụng Bookworm để xem đầy đủ tài liệu. Bạn đọc có thể tải Bookworm từ App Store hoặc Google play với từ khóa "VNU LIC”)
Giáo trình triết học Mác - LêNin : dùng trong các trường đại học, cao đẳng
Lịch sử vật lý. Tập 1
Quantum mechanics : concepts and applications. (2nd ed.)
Introduction to the Thermodynamics of Materials. (6th edition).
Practical Microsoft Visual Studio 2015
Neuroscience : exploring the brain (Third Edition)
Pro Machine Learning Algorithms : A Hands-On Approach to Implementing Algorithms in Python and R
Python Data Analytics : With Pandas, NumPy, and Matplotlib. (2nd ed.).
How Can Physics Underlie the Mind? : Top-Down Causation in the Human Context
The Formalisms of Quantum Mechanics : An Introduction