Hướng dẫn sử dụng

Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video

Loại tài liệu: Tài liệu số - Book

Thông tin trách nhiệm: Isupova, Olga

Nhà Xuất Bản: Springer

Năm Xuất Bản: 2018

Tải ứng dụng tại các liên kết sau để xem đầy đủ tài liệu.

Tóm tắt

This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes. Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives. The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes a novel anomaly localisation procedure. In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then developed where the number of topics is determined from data. Batch and online inference algorithms are developed. The latter part of the thesis considers behaviour analysis and anomaly detection within the change-point detection methodology. A novel general framework for change-point detection is introduced. Gaussian process time series data is considered. Statistical hypothesis tests are proposed for both offline and online data processing and multiple change point detection are proposed and theoretical properties of the tests are derived. The thesis is accompanied by open-source toolboxes that can be used by researchers and engineers.

Ngôn ngữ:en
Thông tin trách nhiệm:Isupova, Olga
Thông tin nhan đề:Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video
Nhà Xuất Bản:Springer
Loại hình:Book
Bản quyền:© Springer International Publishing AG, part of Springer Nature 2018
Mô tả vật lý:144 p.
Năm Xuất Bản:2018

(Sử dụng ứng dụng VNU- LIC quét QRCode này để mượn tài liệu)

(Lưu ý: Sử dụng ứng dụng Bookworm để xem đầy đủ tài liệu. Bạn đọc có thể tải Bookworm từ App Store hoặc Google play với từ khóa "VNU LIC”)